Introduction to REX-ISOLDE concept and overview of (future) European projects

Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen

Energetic Radioactive Beam Facilities in Europe

World ISOL

FACILITY	DRIVER	POWER	USER BEAMS ACCELERATED	ENERGY	PHYSICS REACH
LOUVAINE- LA-NEUVE (BELGIUM) 1989	30 MeV protons	6 kW	⁶ He, ⁷ Be, ^{10,11} C, ¹³ N, ¹⁵ O, ¹⁸ F, ^{18,19} Ne, ³⁵ Ar	10 MeV/u cyclotron	Astrophysics, Nuclear structure
HRIBF Oak Ridge (USA) 1997	100 MeV p, d, α <i>(-ve ion</i> <i>source)</i>	1 kW	⁷ Be, ^{17,18} F, ⁶⁹ As, ^{67,83} Ga, ⁷⁵⁻⁷⁹ Cu, ⁸⁰⁻⁸⁷ Ge, ⁸⁴ Se, ⁹² Sr, ^{118,120,122,124} Ag, ¹²⁹ Sb, ¹³⁰⁻¹³⁴ Sn, ^{132,134,136} Te	2 - 10 MeV/u tandem	Nuclear Structure, Astrophysics
ISAC TRIUMF (CANADA) 2000	500 MeV protons	50 kW	^{8,9,11} Li, ¹¹ C, ^{20,21} Na, ¹⁸ Ne, ²⁶ Al, ³⁴ Ar	4.5 MeV/u linac	Astrophysics, Condensed matter, Nuclear Structure
SPIRAL GANIL (FRANCE) 2001	100 MeV/u heavy ions	6 kW	^{6,8} He, ^{15,19-21} O, ¹⁸ F, ^{17-19,23-26} Ne, ^{33-35, 44,46} Ar, ⁷⁴⁻⁷⁷ Kr	2 - 25 MeV/u cyclotron	Nuclear structure, Astrophysics
REX ISOLDE (CERN) 2001	1.4 GeV protons	3 kW	8,8Li, ^{10,11} Be, ²⁴⁻²⁸ Na, 28-32Mg, ⁶⁸ Ni, 67-73Cu, ^{74,76,78,80} Zn, 70Se, ^{88,92} Kr, ¹⁰⁸ in, 108,110Sn, ^{122,124,128} Cd, 188,140,142,144Xe, 148Pm, ¹⁵³ Sm, ¹⁵⁶ Eu	0.3 - 3 MeV/u linac	Nuclear structure, Condensed matter, Astrophysics

REX post-accelerator

- Originally constructed by several CERN member states
 ~ 15 MCHF
- Utilises now \rightarrow 50% ISOLDE running time
- REX has accelerated over 50 different RIB
- Present RIB yield from ISOLDE allows 10% of all 700 radioisotopes be used

REX-ISOLDE layout

Rex efficiencies

New directions: production of isomeric beams,

• Purified isomeric beams:

Laser ionization employing hyperfine splitting

•Coulomb excitation and transfer reactions (after post-acceleration)

J. Van Roosbroeck,- PRL 92 (2004) 112501

Coulomb excitation of odd-odd ^{68,70}Cu

Induced instantaneous depopulation of a nuclear isomer

- Population via Coulex (E2)
- Decay through faster M1 transition
- "Paar" parabola (I(I+1) dep.): E2 excitation over the parabola's maximum
- Energy is "released" and half life of the isotope is changed
- Mechanism present in other odd-odd nuclei (e.g. ^{108,110}Ag)?
- Interest for nucleosynthesis processes?

Coulomb barrier for RIB

HIE-ISOLDE at **CERN**

Increase in REX energy from 3 to 10 MeV/u (first step in increase to 5.5 MeV/u)

Increase proton intensity 2 \rightarrow 6 μ A (LINAC4, PSB upgrade) - target and front-end upgrade

RFQ cooler, REX-TRAP, REX-EBIS REX-ECR upgrades

Super-HRS for isobaric separation RILIS upgrade & LIST

EU projects (2005-2009)

EURONS I³: (2.1 MCHF)

TNA

JRA's: INTAG, CHARGE BREEDER, LASER, SAFERIB, (TRAPSPEC)

EURISOL DS: (2.8 MCHF)

R&D in targets & β-beam radioisotope manipulation safety

100kW direct production 5 MW spallation n target \rightarrow 100 MeV/u RIB

European Roadmap for RIB facilities

The beta-beam, see Poster MOPLT007

AIM: provide beams of electron (anti) neutrinos by decay of beta active ions.

World machines

Location	Driver	Post-accelerator	Fragment separator	Type of facility
GSI –FAIR	synchrotron, heavy ions: 1.5 A GeV	-	'Super-FRS'	In-Flight
EURISOL	protons, 1 GeV, 1-5 MW	CW Linac, up to 100 A MeV	-	ISOL
USA: RIA Rare Isotope Accelerator	900 MeV protons heavy ions: 400 A MeV, 100 kW	Linac up to 8–15 A MeV	4-dipole Separator	ISOL, In-Flight
JAPAN: RIKEN RIB Factory	Ring-cyclotrons up to 400 AMeV (light ions) up to 150 A MeV (heavy ions)	-	3 fragment Separators storage & cooler rings	In-Flight